1,883 research outputs found

    Conceptual Design and Analysis of Service Oriented Architecture (SOA) for Command and Control of Space Assets

    Get PDF
    The mission-unique model that has dominated the DoD satellite Command and Control community is costly and inefficient. It requires repeatedly “reinventing” established common C2 components for each program, unnecessarily inflating budgets and delivery schedules. The effective utilization of standards is scarce, and proprietary, non-open solutions are commonplace. IT professionals have trumpeted Service Oriented Architectures (SOAs) as the solution to large enterprise situations where multiple, functionally redundant but non-compatible information systems create large recurring development, test, maintenance, and tech refresh costs. This thesis describes the current state of Service Oriented Architectures as related to satellite operations and presents a functional analysis used to classify a set of generic C2 services. By assessing the candidate services’ suitability through a SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis, several C2 functionalities are shown to be more ready than others to be presented as services in the short term. Lastly, key enablers are identified, pinpointing the necessary steps for a full and complete transition from the paradigm of costly mission-unique implementations to the common, interoperable, and reusable space C2 SOA called for by DoD senior leaders

    High temperature thermoelectric efficiency in Ba8Ga16Ge30

    Get PDF
    The high thermoelectric figure of merit (zT) of Ba8Ga16Ge30 makes it one of the best n-type materials for thermoelectric power generation. Here, we describe the synthesis and characterization of a Czochralski pulled single crystal of Ba8Ga16Ge30 and polycrystalline disks. Measurements of the electrical conductivity, Hall effect, specific heat, coefficient of thermal expansion, thermal conductivity, and Seebeck coefficient were performed up to 1173 K and compared with literature results. Dilatometry measurements give a coefficient of thermal expansion of 16×10^−6 K^−1 up to 1175 K. The trend in electronic properties with composition is typical of a heavily doped semiconductor. The maximum in the thermoelectric figure of merit is found at 1050 K with a value of 0.8. The correction of zT due to thermal expansion is not significant compared to the measurement uncertainties involved. Comparing the thermoelectric efficiency of segmented materials, the effect of compatibility makes Ba8Ga16Ge30 more efficient than the higher zT n-type materials SiGe or skutterudite CoSb3

    Removal of odorants from animal waste using Fenton’s reaction

    Get PDF
    The purpose of this study was to evaluate Fenton’s reaction as a means of mitigating the problem of offensive odors emitted from livestock manures. The hypothesis to be tested was that hydroxyl radicals generated during this reaction would oxidize odorant compounds, breaking them down to nonodorous products. The deodorization effect was assessed using various chromatographic techniques to determine the concentration of selected odor indicators present in swine slurry and reactor headspaces before and after treatment. The indicators included seven volatile fatty acids, three phenols, and two indoles that were positively correlated with malodors from animal manure. The extent of their removal strongly depended on the concentration of Fenton’s reagents (0 to 40 mM FeCl3, and 0 to 800 mM H2O2), the initial pH of swine slurry (2.0 to 6.5), and the total solids content (0.6 to 2.9% TSC). Control samples treated with no FeCl3 or H2O2 did not show significant reduction of odorant concentration at all pH and TSC levels tested. Acceptable removals of total odorants (65 to 90%) were observed between pH 3.5 and 5.5. When swine slurry (0.7% TSC, pH 5.0) was treated for 2 h with 40 mM FeCl3 at 400 mM H2O2, all odorants were removed completely (100%), except for small amounts of propionic acid. Odorant removal from swine slurry was in good agreement with that from the headspace air (90-100% removal for most measured odorants). Pilot-scale treatment produced encouraging results, surpassing the expectations based on the outcome of laboratory experiments

    Improved Thermoelectric Cooling Based on the Thomson Effect

    Get PDF
    Traditional thermoelectric Peltier coolers exhibit a cooling limit which is primarily determined by the figure of merit, zT. Rather than a fundamental thermodynamic limit, this bound can be traced to the difficulty of maintaining thermoelectric compatibility. Self-compatibility locally maximizes the cooler's coefficient of performance for a given zT and can be achieved by adjusting the relative ratio of the thermoelectric transport properties that make up zT. In this study, we investigate the theoretical performance of thermoelectric coolers that maintain self-compatibility across the device. We find such a device behaves very differently from a Peltier cooler, and term self-compatible coolers "Thomson coolers" when the Fourier heat divergence is dominated by the Thomson, as opposed to the Joule, term. A Thomson cooler requires an exponentially rising Seebeck coefficient with increasing temperature, while traditional Peltier coolers, such as those used commercially, have comparatively minimal change in Seebeck coefficient with temperature. When reasonable material property bounds are placed on the thermoelectric leg, the Thomson cooler is predicted to achieve approximately twice the maximum temperature drop of a traditional Peltier cooler with equivalent figure of merit (zT). We anticipate the development of Thomson coolers will ultimately lead to solid state cooling to cryogenic temperatures.Comment: The Manuscript has been revised for publication in PR

    Functional connectivity within glioblastoma impacts overall survival

    Get PDF
    BACKGROUND: Glioblastoma (GBM; World Health Organization grade IV) assumes a variable appearance on MRI owing to heterogeneous proliferation and infiltration of its cells. As a result, the neurovascular units responsible for functional connectivity (FC) may exist within gross tumor boundaries, albeit with altered magnitude. Therefore, we hypothesize that the strength of FC within GBMs is predictive of overall survival. METHODS: We used predefined FC regions of interest (ROIs) in de novo GBM patients to characterize the presence of within-tumor FC observable via resting-state functional MRI and its relationship to survival outcomes. RESULTS: Fifty-seven GBM patients (mean age, 57.8 ± 13.9 y) were analyzed. Functionally connected voxels, not identifiable on conventional structural images, can be routinely found within the tumor mass and was not significantly correlated to tumor size. In patients with known survival times (n = 31), higher intranetwork FC strength within GBM tumors was associated with better overall survival even after accounting for clinical and demographic covariates. CONCLUSIONS: These findings suggest the possibility that functionally intact regions may persist within GBMs and that the extent to which FC is maintained may carry prognostic value and inform treatment planning

    Small UAS Detect and Avoid Requirements Necessary for Limited Beyond Visual Line of Sight (BVLOS) Operations

    Get PDF
    Potential small Unmanned Aircraft Systems (sUAS) beyond visual line of sight (BVLOS) operational scenarios/use cases and Detect And Avoid (DAA) approaches were collected through a number of industry wide data calls. Every 333 Exemption holder was solicited for this same information. Summary information from more than 5,000 exemption holders is documented, and the information received had varied level of detail but has given relevant experiential information to generalize use cases. A plan was developed and testing completed to assess Radio Line Of Sight (RLOS), a potential key limiting factors for safe BVLOS ops. Details of the equipment used, flight test area, test payload, and fixtures for testing at different altitudes is presented and the resulting comparison of a simplified mathematical model, an online modeling tool, and flight data are provided. An Operational Framework that defines the environment, conditions, constraints, and limitations under which the recommended requirements will enable sUAS operations BVLOS is presented. The framework includes strategies that can build upon Federal Aviation Administration (FAA) and industry actions that should result in an increase in BVLOS flights in the near term. Evaluating approaches to sUAS DAA was accomplished through five subtasks: literature review of pilot and ground observer see and avoid performance, survey of DAA criteria and recommended baseline performance, survey of existing/developing DAA technologies and performance, assessment of risks of selected DAA approaches, and flight testing. Pilot and ground observer see and avoid performance were evaluated through a literature review. Development of DAA criteria—the emphasis here being well clear— was accomplished through working with the Science And Research Panel (SARP) and through simulations of manned and unmanned aircraft interactions. Information regarding sUAS DAA approaches was collected through a literature review, requests for information, and direct interactions. These were analyzed through delineation of system type and definition of metrics and metric values. Risks associated with sUAS DAA systems were assessed by focusing on the Safety Risk Management (SRM) pillar of the SMS (Safety Management System) process. This effort (1) identified hazards related to the operation of sUAS in BVLOS, (2) offered a preliminary risk assessment considering existing controls, and (3) recommended additional controls and mitigations to further reduce risk to the lowest practical level. Finally, flight tests were conducted to collect preliminary data regarding well clear and DAA system hazards

    Spatial complementarity and the coexistence of species

    Get PDF
    Coexistence of apparently similar species remains an enduring paradox in ecology. Spatial structure has been predicted to enable coexistence even when population-level models predict competitive exclusion if it causes each species to limit its own population more than that of its competitor. Nevertheless, existing hypotheses conflict with regard to whether clustering favours or precludes coexistence. The spatial segregation hypothesis predicts that in clustered populations the frequency of intra-specific interactions will be increased, causing each species to be self-limiting. Alternatively, individuals of the same species might compete over greater distances, known as heteromyopia, breaking down clusters and opening space for a second species to invade. In this study we create an individual-based model in homogeneous two-dimensional space for two putative sessile species differing only in their demographic rates and the range and strength of their competitive interactions. We fully characterise the parameter space within which coexistence occurs beyond population-level predictions, thereby revealing a region of coexistence generated by a previously-unrecognised process which we term the triadic mechanism. Here coexistence occurs due to the ability of a second generation of offspring of the rarer species to escape competition from their ancestors. We diagnose the conditions under which each of three spatial coexistence mechanisms operates and their characteristic spatial signatures. Deriving insights from a novel metric — ecological pressure — we demonstrate that coexistence is not solely determined by features of the numerically-dominant species. This results in a common framework for predicting, given any pair of species and knowledge of the relevant parameters, whether they will coexist, the mechanism by which they will do so, and the resultant spatial pattern of the community. Spatial coexistence arises from complementary combinations of traits in each species rather than solely through self-limitation

    Increased R2* in the Caudate Nucleus of Asymptomatic Welders

    Get PDF
    Welding has been associated with neurobehavioral disorders. Welding fumes contain several metals including copper (Cu), manganese (Mn), and iron (Fe) that may interact to influence welding-related neurotoxicity. Although welding-related airborne Fe levels are about 10-fold higher than Mn, previous studies have focused on Mn and its accumulation in the basal ganglia. This study examined differences in the apparent transverse relaxation rates [R2* (1/T2*), estimate of Fe accumulation] in the basal ganglia (caudate nucleus, putamen, and globus pallidus) between welders and controls, and the dose–response relationship between estimated Fe exposure and R2* values. Occupational questionnaires estimated recent and lifetime Fe exposure, and blood Fe levels and brain magnetic resonance imaging (MRI) were obtained. Complete exposure and MRI R2* and R1 (1/T1: measure to estimate Mn accumulation) data from 42 subjects with welding exposure and 29 controls were analyzed. Welders had significantly greater exposure metrics and higher whole-blood Fe levels compared with controls. R2* in the caudate nucleus was significantly higher in welders after controlling for age, body mass index, respirator use, caudate R1, and blood metals of Cu and Mn, whereas there was no difference in R1 values in the basal ganglia between groups. The R2* in the caudate nucleus was positively correlated with whole-blood Fe concentration. This study provides the first evidence of higher R2* in the caudate nucleus of welders, which is suggestive of increased Fe accumulation in this area. Further studies are needed to replicate the findings and determine the neurobehavioral relevance

    Measurement of the electrical resistivity and Hall coefficient at high temperatures

    Get PDF
    The implementation of the van der Pauw (VDP) technique for combined high temperature measurement of the electrical resistivity and Hall coefficient is described. The VDP method is convenient for use since it accepts sample geometries compatible with other measurements. The technique is simple to use and can be used with samples showing a broad range of shapes and physical properties, from near insulators to metals. Three instruments utilizing the VDP method for measurement of heavily doped semiconductors, such as thermoelectrics, are discussed
    corecore